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What do we know for sure about the cuprate superconduc-
tors? II. Symmetry of the order parameter.∗

If we consider a gas of weakly interacting fermions in free space, with a BCS-type pairing
interaction Vkk′ for states close to the Fermi surface such that Vkk′ is not a strong function
of |k| and |k′| but may be a strong function of the angle k · k′ between them, then the
resulting BCS gap equation takes the form†

∆k = −
∑
k′

Vkk′
∆k′

2Ek′
tanh

Ek′

2T
(1)

and it is known that as well as (possibly) the familiar original BCS solution, namely
∆k=const, there may, depending on the form of Vkk′ also exist solutions in which ∆ is a
function of direction on the Fermi surface: ∆ = ∆(k). (Solutions even in k correspond to
a spin singlet pairing, while these corresponding to ∆ odd in k correspond to spin triplet
state). Such solutions are not generally believed to be realized in the classic supercon-
ductors, but it is almost universally believed that the pairing scheme corresponding to
each of the three superfluid phases of 3He is of this type, and strongly suspected that
a similar situation occurs also in some heavy-fermion systems and in SrRu2O4. For-
mally, these situations, which I shall call ‘exotic’, differ from the (‘conventional’) BCS

pairing scheme in that order parameter 〈a†kαa
†
−kβ〉 transforms according to a nontrivial

representation (or a combination of such) of the symmetry group of the Hamiltonian
(in the case of free space, SO(3)orb ⊗ SU(2)spin). From the very earliest days of work
on the cuprates, it has been an important question whether the pairing state realized
there is ‘conventional’ or ‘exotic’ (and if the latter, of what type), and although a strong
consensus has been reached in recent years, the battle is still not quite over.

It is important to realize that the question of the symmetry of the order parameter
can be discussed quite independently of the validity or not of the BCS (weak-coupling)
approach: the only assumption we need is the existence of ODLRO, on which see lecture
9. Formally, we assume that for some values of t1, . . . , t4 we have

〈ψ†α(r1t1)ψ
†
β(r2t2)ψγ(r3t3)ψδ(r4t4)〉 =

{
= 0, T > Tc
= const, T < Tc

(2)

in the limit‡ |r1 + r2 − r3 − r4| → ∞, |r1 − r2| and |r3 − r4| finite and fixed. This then
allows us to define an ‘anomalous average’ of the standard form

Fαβ(r1t1, r2t2) ≡ 〈ψα(r1t1)ψβ(r2t2)〉 (3)

with the usual assumption of relaxation of particle number conservation. Except for one
very special possibility (namely that F is odd in the interchange of t1 and t2) which

∗Ref: Annett et al., in G V.
†Since this discussion is only motivational, I ignored some of the complications associated with spin

triplet pairing (see lecture 1)
‡The definition strictly needs to be tightened up a little to allow for the possibility that F depends

nontrivially on the COM coordinate (r1 + r2)/2.
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seems very unlikely to be relevant to the cuprates,§ F will, barring pathology, have a
finite value at t1 = t2, and we use this to define a generalized Ginzburg-Landau type
order parameter by

Ψ(r1, r2;α, β) ≡ 〈ψα(r1)ψβ(r2)〉 = −Ψ(r2, r1;β, α)
[
≡ Fαβ(r1t1, r2t2)t1=t2

]
(4)

It is the symmetry of the order parameter Ψ(r1, r2;α, β) which is the subject of the
ensuing discussion; it should be carefully noted that in any theory more general than a
simple BCS-type weak coupling theory there need not be any simple relationship between
Ψ and the single-particle energy gap (even if the latter concept is unambiguously defined,
which it may not be). In particular, the fact that Ψ vanishes for certain direction on
the Fermi surface (if this concept is applicable, see below) need not imply that |∆| also
vanishes there.

In general, the group G of exact symmetry of the Hamiltonian of a cuprate super-
conductor is of the form

G = U(1)⊗ Tl ⊗H (5)

where U(1) is the usual gauge group. Tl is the (abelian) group of lattice translations
and H is the point group of the crystal in question. Although it is possible to give a
general analysis, life simplifies enormously if we make the ‘default’ assumption that the
symmetry with respect to Tl is not broken in the superconducting state, i.e., that the
order parameter transforms according to the trivial (identity) representation of Tl. At
present there seems no convincing evidence against this ‘default’ hypothesis¶ Thus, we
can in effect take G to be given by U(1)⊗H. We know that the symmetry with respect
to U(1) is spontaneously broken in the superconducting state (in the usual sense of the
BCS ‘particle-nonconserving’ trick): is that with respect to H also broken?

If we could neglect spin-orbit coupling, H could be written as a product SU(2)spin⊗
Horb where Horb is a group containing reflections, rotations etc. of the orbital coordinates
only. Since spin-orbit coupling is not totally negligible for the cuprates, we must rather
take the group as consisting of such orbital operations coupled with similar operations
on the spin space. However, at this point life again simplifies enormously if we make the
assumption of spin singlet pairing, namely

Ψ(r1, r2;α, β) = (iσy)αβΨ(r1, r2) (6)

If this is right, then the symmetry group is reduced effectively to U(1)⊗Horb.
Equation (6), while extremely plausible, is perhaps not 100% foolproof. The principal

justification for it is the experimental observation, by now made in many different cuprate
superconductors, that the Knight shift (or more accurately its ‘Pauli’ part) tends to zero
in the superconducting state in the limit T → 0, independently of the field direction. In
any simple weak-coupling theory of the BCS type, this behavior would be unambiguous

§See Annett et al., ref. cit., p. 387.
¶Despite the currently fashionable emphasis on the ‘stripes’ which have been verified to exist in

particular regimes of the phase diagram for one or two super conducting cuprates, there is to my mind no
evidence that they are a generic feature, let alone that they have anything to do with superconductivity.
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evidence of spin singlet pairing. It may perhaps be argued that in a more general theory
we cannot be absolutely sure that a triplet-paired (or perhaps mixed singlet-triplet)
state would not behave in the same way, but to the best of any knowledge no concrete
theory having this property has been proposed, and while effects beyond BCS might
lead to some reduction in Ks (cf. also the behavior of 3He-B) it seems a priori very
implausible that they would lead to its complete vanishing. Thus from now on, I will
assume that equation (6) is correct for the cuprates, whereupon it follows from the Pauli
principle that Ψ(r1, r2) has even parity, i.e., is symmetric in r1 and r2. The question at
issue therefore reduces to the symmetry of Ψ(r1, r2) under the operations of the ‘orbital’
point group Horb of the relevant crystal.

Let us for the moment neglect the complications associated with the c-axis layering
structure and thus restrict r1 and r2 to lie within a single CuO2 plane. Although the
ensuing argument is quite general, it helps one’s intuition if one also fixes the center-
of-mass coordinate (r1 + r2)/2 to lie at a point of high symmetry in the lattice, let us
say the position of a Cu atom. (A similar simplification is obtained if one assumes that

relevant electron states come from a single band, so that the quantity Fk ≡ 〈a†k↑a
†
−k↓〉

is unambiguous defined (with k the appropriate Bloch quasimomentum; then the rele-
vant question is the symmetry of Fk under operations of Horb on k. I shall generally
not distinguish explicitly between the r-space and k-space representations of the order
parameter, since from the point of view of symmetry classification (only!) they are es-
sentially identical). If we neglect for the moment yet another complication, namely that
of orthorhombic anisotropy (which is small or zero in most materials other than YBCO),
then the symmetry group of the CuO2 planes is that of the square, namely C4v in the
standard group-theoretical terminology. This is a rather simple group: the primitive
operations are

(a) rotation through π/2 about the (001)(z-) axis (R̂π/2)

(b) reflection in a crystal axis, e.g. (100) (Îaxis)

(c) reflection in a 45◦ (110) axis (Îπ/4);

and any one of these three can be represented as a product of the other two, i.e. ÎaxisÎπ/4R̂π/2 =
1. In view of the above conclusion about the spin singlet nature of the pairing and the
consequent even parity of the state, all states we are interested in here R̂2

π/2 = +1,

and moreover of course Î2axis ≡ Î2π/4 ≡ +1. Thus, all the even-parity irreducible repre-

sentations can be labeled by the possible eigenvalues, ±1, of (e.g.) the operators R̂π/2
and Îaxis. These four possible representations, which are all one-dimensional, are de-
noted A1g, A2g , B1g and B2g in the standard group-theoretic notation, or informally
respectively as s+, s− (or g), dx2−y2 and dxy; their symmetry properties are shown in
the Table; A1g is the ‘identity’ (or ‘trivial’ representation). Representative forms of the
corresponding functions are also shown in the Table; however, it should be emphasized
that the actual form may look quite different, provided only that it transforms in the
correct way. For example, a possible form of s-wave OP as a function of the angle θ in
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Informal
name
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theoretic
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+

++

+

+

+ +
+

+
+

−

−

+

+

−−

−
−

−
−

s+ A1g +1 +1 const
+

++

+

+

+ +
+

+
+

−

−

+

+

−−

−
−

−
−

s− (‘g’) A2g +1 −1 xy(x2 − y2)

+

++

+

+

+ +
+

+
+

−

−

+

+

−−

−
−

−
−

dx2−y2 B1g −1 +1 x2 − y2
+

++

+

+

+ +
+

+
+

−

−

+

+

−−

−
−

−
−

dxy B2g −1 −1 xy

the CuO2 plane is A+ B cos 4θ, which for |B| > |A| has 8 nodes (such a form of OP is
sometimes called on ‘extended s-wave’ state).

In general, the OP of a superconducting cuprate may correspond to a single irre-
ducible representation (‘irrep’) of the group C4v, or to a superposition of irreducible
representations (the latter possibility is often labeled in shorthand (e.g.) ‘s+ idx2−y2 ’ to
indicate the representations involved). However, it is very important to appreciate that
a very severe constraint on the latter possibility is placed by the experimentally observed
thermodynamic behavior of the cuprates. To see this, we write down an expression for
the Ginzburg-Landau free energy in terms of the amplitudes ψi of the various irreducible
representations: bearing in mind that the requirement of gauge invariance allows only
equal number of ψ’s and ψ∗’s, we see that the most general expression up to terms of
fourth order is:

F (T ) =
∑
ij

αij(T )ψ∗i ψj +
1

2

∑
ijkl

βijkl(T )ψ∗i ψ
∗
jψkψl (7)

However, F is required to be invariant under the operations not only of the gauge group
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U(1) but also of the crystal point group, Horb (= C4v). Since any two different irreps
differ in their eigenvalue under at least one operator of C4v, it immediately follows that
αij(T ) ∼ δij (this result is independent of the particular group). Furthermore, because
of the particularly simple structure of the group C4v, it follows that in the fourth-order
term two different irreps can mix only ‘two by two’: in particular, terms of the form
(e.g.) |ψi|2ψ∗i ψj are forbidden,∗ as is any combination of three different ψi: only terms
of the form |ψi|2|ψj |2 (∼ A1), and ψ∗i ψ

∗
i ψjψj (∼ A2) are allowed. Thus, if φij denotes

the relative phase of ψi and ψj , the most general form of free energy for a system with
the C4v symmetry is

F (T ) =
4∑
i=1

αi(T )|ψi|2 +
1

2

4∑
ij=1

βij(T )|ψi|2|ψj |2f(φij) (8)

(where f depends on the relative magnitude of the A1 and A2 terms, above). Now it
is straightforward to show, within the standard mean-field treatment of the thermody-
namics, that the transition to the superconducting phase occurs at the point where a
particular one of the functions αi(T ) first becomes negative, and that immediately below
this transition the only component represented is the corresponding ψi. Moreover, ap-
pearance of a second component at lower temperature requires a second phase transition,
which depending on the relative magnitudes of the α’s and β’s involved may be either
second or first order,† and which, barring pathologies would be expected to give at least
derivative discontinuities in just about all physical quantities. Now, with the possible
but very dubious exception of a single experiment on YBCO, there seems absolutely no
evidence for such a second phase transition in any cuprate examined to date, and indeed
plenty of evidence against it (in the sense that in many experiments quantities such as
the penetration depth λ(T ) have been plotted carefully as a function of temperature
from very low T to Tc, and no anomalies found). Thus, the thermodynamic behavior of
the cuprates provides very strong evidence that the OP of the bulk system belongs to
a single irreducible representation of C4v. (One cannot necessarily draw an equivalent
conclusion concerning the OP near a surface (or perhaps in the vicinity of certain types
of impurity), since the corresponding contribution to the thermodynamic quantities is
likely to be so small relative to the bulk contribution as to be invisible in practice). Given
this, the leading contenders for the bulk OP are a simple s-wave (A1g) state, possibly of
the ‘extended’ type, and the dx2−y2 (B1g) state.

Before embarking on a discussion of experimental tests, we should say a word about
the complications due to orthorhombicity and c-axis structure. While the members of
the Hg series are strictly tetragonal and those of the two Tl series very nearly so, most
other cuprates have some orthorhombic asymmetry. In particular, in YBCO (both 1237
and 1248) the chains break the tetragonal symmetry, so that while Îaxis remains a good
symmetry R̂π/2 and Îπ/4 are no longer so. In LSCO and the Bi series, on the other hand,

∗A term of the form ψ∗i ψ
∗
jψkψl where i, j, k, l are all different is allowed, but does not affect the

subsequent argument. Note that these conditions do not hold for an arbitrary symmetry group (e.g. for
SO(3)).
†For a detailed analysis see Y. Imry, J. Phys. C 8, 567 (1975).
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it is the two orthogonal 45◦ axes which are inequivalent, while remaining mirror planes;
thus in this case Îπ/4, but not R̂π/2 or Îaxis, remains a good symmetry. As a result of the
orthorhombicity, the states cannot be classified rigorously as (e.g.) s or dx2−y2 ; however,
we can still classify them as ‘s-like’ or ‘d-like’ according as the OP preserves or changes
its sign under a π/2 rotation (the magnitude will in general change, e.g., in YBCO it
seems plausible that the OP along the b-axis will be greater in magnitude than that
along the a-axis).

Most experiments on YBCO have been done on twinned crystals, and in interpreting
these it is important to know how the OP, should it be dx2−y2-like, behaves as we cross a
twin boundary: does it preserve its sign with respect to the ‘absolute’ (NSEW) axes, or
to the crystal a-and b-axes? For reasons given in Annett et al. (ref. cit., p. 391) I believe
it is overwhelmingly plausible that the first (‘gyroscopic’) alternative is correct, i.e. that
(e.g.) the + sign is everywhere associated with a N-S axis, irrespective of whether the
crystal is oriented so that it is the a-axis or b-axis. (The magnitude of the corresponding
component may of course depend on the latter).

Finally, what about the possible complications associated with the c-axis layering
structure? In principle this gives rise to a large number of new possibilities, but all of
them would require either that the pairing is exclusively inter-plane (i.e. that Ψ(r1, r2)
vanishes when r1 and r2 lie in the same CuO2 plane) or that reflection symmetry (in
bilayer materials) and/or the translational symmetry under a c-axis lattice translation
is broken. It seems difficult to reconcile either of these hypotheses either with the
existence of an (ab-plane) Josephson effect between cuprates and classic superconductors,
or with the apparent qualitative independence of the superconducting behavior from the
c-axis structure. Nevertheless, since the most worrying objections to the ‘established’
symmetry assignment come from experiments sensitive to the c-axis behavior, we should
at least bear these complications at the back of our minds.

I now turn to the question of experimental discrimination between the ‘s’ and ‘d’
(i.e. dx2−y2) hypotheses. There exists by now a vast body of experiments, both spectro-
scopic and on the asymptotic temperature-dependence of quantities such as the pene-
tration depth as T → 0, which give apparently incontrovertible evidence that the single-
particle density of states in a typical cuprate superconductor is nonzero down to an
energy of at most of the order of 0.01Tc. Unfortunately, this does not by itself rule out
the s-wave scenario: all it tends to show is that the single-particle energy gap has nodes
(or at least very low minima), and this is entirely consistent with an ‘extended s-wave’
scenario. A further difficulty in interpreting such experiments as giving information on
the order parameter is that the very existence of the pseudogap phenomenon shows that
we can get a thinning-out of the low-energy DOS even when the superconducting OP is
zero, so that there is no one-one correspondence between the two quantities (although it
is admittedly difficult to envisage a scenario where the OP is finite in all directions but
the DOS at low or zero energy is nevertheless finite). A somewhat more promising class
of evidence comes from the angular dependence of the ‘gap’ seen in the ARPES, which
by now is universally agreed to be a maximum in the (π, 0) direction (along the crystal
axes) and either zero of at least very small along the (π, π) (45◦ diagonal) direction –
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exactly the behavior and would expect for a dx2−y2 state if the amplitude of the gap as
a function of angle reflects that of the OP. Again, the interpretation is complicated by
the fact that

(a) the gap seen in ARPES may not be simply the ‘superconducting’ gap, and

(b) an extended s-wave state of the form (e.g.) A + B cos 4θ with B slightly greater
than A, would give an angular dependence of |∆| which might in practice be very
difficult to distinguish from a dx2−y2 state.

Clearly, the optimum way of distinguishing a d-state from an s-state would be by
looking directly at its defining characteristic, namely the presence or absence of a sign
change in the order parameter under a π/2 rotation. In principle, some spectroscopic
experiments, e.g. Raman and neutron scattering, can give information on this point,
because while the energies of the ‘particle-hole’ states excited are of course not directly
sensitive to the presence or absence of the sign change the relevant coherence factors
depend on it; see Annett et al., sections 5.3-4. However, the interpretation of such
experiments requires a number of nontrivial further assumptions (typically, that the
microscopic state of the pairs is reasonably ‘BCS-like’), so I omit discussion of them and
go on now to the one class of experiments which appears to be capable of determining the
symmetry of the OP independently of microscopic assumptions, that is the Josephson
(quantum phase interference) experiments. Such experiments were originally proposed
in the context of the heavy-fermion superconductors, some of which are thought to be
paired in a p-wave state (cf. lecture 1); however, for good practical reasons (cf. below)
they were not attempted in this context until very recently. By contrast, in the case
of the cuprates this kind of experiment has been spectacularly successful [1998 Buckley
Prize].

In reading the (now extensive) literature on the Josephson experiments, it is impor-
tant to distinguish between arguments which rely on certain implicit assumptions about
tunneling matrix elements, etc., (e.g. the ‘Sigrist-Rice’ formula, see below) and those
which are independent of such considerations and rely only on basic symmetry princi-
ples; I will concentrate on the latter, since I believe that it is only when this is done that
the Josephson experiments have a unique status.

As we saw in part I, lecture 13, when two classic (s-wave) superconductors are coupled
by a Josephson junction, this induces a (lowest-order) Josephson energy of the form

E = −const
1

2
(Ψ1Ψ

∗
2 + Ψ∗1Ψ2) ≡ −EJ cos ∆φ12 (9)

where ∆φ12 is the (unambiguously defined) phase difference between the coordinates 1
and 2. Except possibly under very special conditions which in practice appear to require
ferromagnetic-metal junctions‡, EJ is always positive. A second statement is that if a set
of such junctions are inserted in a bulk ring (SQUID geometry) then there is a definite
relation between the sum of the phase differences ∆φi across the various junctions i

‡Ryazanov et al., PRL 86, 2427 (2001).
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(taken e.g. ‘clockwise’ around the ring) and the total flux (external plus self-induced) Φ
trapped through the ring: ∑

i

∆φi = 2πΦ/Φ0 (10)

It is an immediate consequence of equations (9) and (10)

Ic

I

Ic

I
(and the hypothesis that all EJ > 0) that (a) an isolated
SQUID ring in zero external field will carry zero current
and hence zero trapped flux, irrespective of the number
of junctions (and of the self-inductance of the ring), and
(b) that in a ‘dc SQUID’ setup (two junctions with leads
attached between them, see figure) the critical current
will be modulated by the trapped flux Φ according to

Ic(Φ) = 2Ic| cosπΦ/Φ0| (11)

and this is maximum (zero) for an integral (half-integral) amount of trapped flux. These
properties have been repeatedly confirmed experimentally in circuits made entirely out
of ‘classic’ superconductors such as Al or Nb.

Now let’s discuss how these considerations are modified when the circuit includes
one or more bulk superconductors with an ‘exotic’ OP. We first have to resolve a ‘book-
keeping’ problem: our definition of the ‘amplitude’ Ψ of the exotic OP will depend on
which lobe we choose as the ‘reference’ one. It is simplest to resolve this, in the case of a
single orientation (e.g., NSEW) of the exotically paired crystal, by arbitrarily choosing
a definite direction in absolute space (e.g. ‘north’) and defining Ψ to be the amplitude
of the lobe pointing in this direction.§

Josephson experiments on ‘exotic’ circuits involve two fundamental principles:

(A) If two bulk superconductors, and the interface (junction) between them, are de-
scribed by a Hamiltonian invariant under the operations of some group G, then
the Josephson coupling energy must be similarly invariant under G.

(B) Equation (10) must hold provided the phase differences ∆φi are consistently de-
fined relative to one another.

It is convenient to divide existing Josephson experiments into three classes:

(I ) which exploits principle A only,

(II ) which exploits principle B only, and

(III) which exploits both A and B.

§We implicitly consider for definiteness a dx2−y2 OP. For the case of s− or dxy , the definition needs
to be modified somewhat, but it is obvious how to do this.
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  UIUC
experiment 

In the following I will assume that we can be confident that any Josephson effects seen
in the experiments are lowest-order, i.e., crudely speaking, of the form described by
equation (9) (rather than, say, by an energy proportional to Ψ∗21 Ψ2

2); this hypothesis can
be (and in many cases has been) checked from the periodicity of the relevant Fraunhofer
diffraction pattern.

The importance of principle A is that it often forbids a lowest-order Josephson effect
between superconductors of different pairing symmetry (or with the same symmetry but
different orientation). The most obvious example is a c-axis-oriented interface between
a cubic s-wave superconductor 1 (e.g. Pb) and a tetragonal cuprate 2 (e.g. Tl-2201).
If the pairing in the cuprate is pure dx2−y2 and the

1

2

ninterface (junction) itself possesses tetragonal symme-
try, then invariance of the coupling energy under a π/2
rotation forbids any lowest-order Josephson coupling,
i.e. any expression of the form (9) where Ψ2 is defined
as above (since such a rotation preserves the sign of Ψ1

but reverses that of Ψ2). Similarly, an ab-plane junction
at 45◦ between a dx2−y2-paired superconductor 2 and a
second superconductor 1 should show no lowest-order
Josephson effect, irrespective of whether 1 has s-wave or a dx2−y2 pairing;¶ in this case
the symmetry involved is reflection in the normal n shown. (Again, Ψ1 maintains its
sign while Ψ2 is reversed).

The application of principle B is most easily seen from the geometry of the original
UIUC experiment (see the figure); for the moment we neglect complications associated
with the lack of exact tetragonal symmetry in YBCO. The crucial point is that from

¶Note however that if 2 is (e.g.) dx2−y2 and 1 s− or dxy, a lowest-order effect can occur.
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Tsuei-Kirtley 

experiment 

symmetry, the coupling of the OP Ψ1 of external s-wave OP of Pb to the lobe of the
YBCO OP which points normal to the surface must be the same for the two junctions;
thus for example, if we choose our ‘reference’ lobe (with OP Ψ2) to be vertical, then the
vertically oriented (b-axis) junction must correspond to an energy of the form (9), where
it is plausible (though not necessary to the argument) that EJ is positive. On the other
hand, with this definition the Josephson energy of the horizontally oriented junction
must by symmetry be of the form −EJ

1
2 (Ψ1Ψ̃

∗
2 + c.c.), where Ψ̃∗2 is the amplitude of

the horizontally oriented lobe. But the vertical and horizontal axes are related by a π/2
rotation; thus, if the OP YBCO has s-wave symmetry (R̂π/2 = +1) we have Ψ̃2 = Ψ2,

while if it has d-wave symmetry (R̂π/2 = +1) the relation is Ψ̃2 = −Ψ2. So when
the Josephson coupling energy of this junction is expressed in terms of the ‘reference’
amplitude Ψ2, it is of the form (9) for the s-wave case (with EJ > 0) but for the d-wave
case acquires a − sign, i.e., it is +EJ cos ∆φ12. It is clear that this phase change of
π is equivalent to inserting an extra half-quantum of flux into the circuit, so that the
SQUID shown in fig. 2 should in the case of s-wave pairing, behave ‘normally’ (maximum
critical current at integral values of flux) but for d-wave pairing should show the reverse
behavior, with maxima at half-integral values of flux and minima at integral (including
zero) flux. The original UIUC experiment demonstrated fairly convincingly that the
latter result occurs.∗

A very elegant circuit design which in some sense exploits both principles A and B

∗For the complications associated with orthorhombicity, lack of exact junction symmetry etc., see
section 7 of Annett et al., ref. cit.
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is the ‘tricrystal-ring’ setup of Tsuei and Kirtley: see fig. 3 (all crystals are of identical
material) where we should ignore for now all but the central ring. I will discuss a
slightly idealized version of this experiment, in which all the angles involved are exactly
30◦, and moreover neglect self-inductance effects, so that the equilibrium configuration
of the OP’s in the various regions is determined by the consideration that the sum of
the Josephson couplings across the these interfaces should be a minimum. What does
this imply about the quantity ∆Φtot ≡

∑
i ∆φi? To put it crudely and intuitively, the

1-2 and 1-3 junctions are related by Îaxis, while the 2-3 and 1-2 junctions are related
by R̂π/2. Thus, if the eigenvalue of ÎaxisR̂π/2 is +1, the configuration which achieves
minimum total Josephson energy is ∆φtot = 0, while if it is −1, it corresponds to
∆φtot = π. These two possibilities for ∆tot correspond, according to equation (10), to
a trapped flux through the hole of zero and half a flux quantum respectively. Since
ÎaxisR̂π/2 ≡ Î45◦ , we see by reference to the Table that observation of zero flux would
indicate an s or dxy state, while observation of half a flux quantum would be strong
evidence for s− or dx2−y2 . It should be emphasized that in the absence of more detailed
assumptions (in my opinion less firmly based) about the form of the Josephson coupling
it is impossible in this geometry to discriminate between the two possibilities in each
case. ( However, an experiment† similar in concept in a different geometry has ruled out
any s-wave state, at least in Tl-2201).

There are by now around a couple of dozen quantum phase interference experiments
in the literature, of all three types. All type-II experiments to date have been done on
YBCO (mostly optimally doped, though a couple are in the underdoped regime) and
have indicated that in this system the pairing is d-wave, and very probably‡ dx2−y2 .

All the tricrystal ring experiments§ have shown that the pairing is either s− or
dx2−y2 ; to date these have been done on YBCO, GdBCO, Tl-2201, Bi-2212 and most
recently the electron-doped cuprate NCCO. Thus, prime facie, everything is consistent
with assignment of a dx2−y2 OP generically to the cuprates. Unfortunately there is a fly
in the ointment: while the type-I experiments concluded to date are generally ambiguous,
at least one experiment of this type (Li et al., PRL 83, 4160 (1999)) has been interpreted
by its authors as clearly inconsistent with (pure or majority) dx2−y2 pairing and evidence
rather for a conventional s-wave state. I believe however that there are some problems
with the geometry of this experiment [discuss], so would take the view that the dx2−y2
assignment is, at least, substantially more plausible than any alternative.

†:Tsuei et al., Nature 387, 481 (1997).
‡Principle A applied to (e.g.) the original UIUC experiment would forbid a dxy states if the YBCO-Pb

junctions were invariant under reflection in the normal.
§An early type-III experiment in a different geometry (‘IBM I’) was interpreted as evidence for s-wave

pairing. See however Annett et al., ref. cit.


